d라이브러리
"평면"(으)로 총 1,173건 검색되었습니다.
- 구르는 돌에서 만나는 진리, 오일러의 수과학동아 l2009년 03호
- 평면으로 도형을 둘러싸려면 평면이 4개가 필요한데, 이는 바로 사면체다. 사면체에는 평면 3개가 모이는 꼭짓점이 총 4개가 있다. 모서리의 개수는 4개의 점에서 두 점을 선택하는 조합으로 구해 4C₂=6이고 면의 개수는 4개의 점에서 세 점을 선택하는 조합인 4C₃=4이므로 오일러의 수는 4-6+4=2다 ... ...
- “마음대로 구부리세요~!” 차세대 반도체 소재‘그래핀’어린이과학동아 l2009년 03호
- 그런데 어떻게 구부렸다 펴도 아무렇지 않은 거죠?저는 탄소 원자들이 벌집 모양의 평면을 이루고 있는 물질로, 원자 한 층 정도의 두께밖에 안 돼요. 세상에서 가장 얇은 물질이면서도 무척 안정되어 있지요. 게다가 신축성까지 좋아서 당기거나 접어도 전기를 흐르게 하는 데 아무 문제가 ... ...
- 완벽(完璧)한 입체, 구과학동아 l2009년 03호
- 구면좌표를 P=(α,β)라고 하자. xy 평면 위로 P의 정사영을 P'라고 하면 OP'=cosβ다. 따라서 xy평면에서 P'의 좌표는 (OP'·cosα, OP'·sinα)=(cosβcosα, cosβsinα)다. 한편 P의 z좌표는 sinβ이므로 점 P를 공간좌표로 나타내면 P(cosβcosα, cosβsinα, sinβ)다. 여기 ...
- 윷놀이로 떠나는 수학여행과학동아 l2009년 02호
- 그리는 수학놀이인 셈이다.행렬과 그래프윷놀이 말판을 행렬로!윷놀이 말판이라는 좌표평면에 그리는 윷함수는 행렬로도 표현할 수 있다. 사실 행렬은 그래프와 표리일체로 모든 그래프는 행렬로 표현할 수 있다. 29개의 방이 있는 윷놀이 말판을 편의상 5개의 꼭지점이 있는 그래프 G라 하고 이를 ... ...
- 2009년은 우주와 함께어린이과학동아 l2009년 02호
- 토성의 위치에 따라 지구에서 보는 고리의 기울기가 변하는데, 약 15년에 한 번씩 고리 평면이 우리의 시선과 나란해집니다. 이 때는 토성의 고리가 안 보입니다. 2009년 9월 4일이 바로 이 현상이 일어나는 날입니다.태양계에서 가장 아름다운 행성으로 알려진 토성의 고리 없는 모습을 볼 수 있다니 ... ...
- [지구과학]우주에 작용하는 힘과학동아 l2009년 01호
- 비례 상수이다. (다) (중략) 세 번째는 평탄 우주로서 이 우주는 공간이 휘지 않고 평면으로 돼 있으며, 중력에너지가 팽창에너지와 평형을 이뤄 결국 팽창이 멈춘 정적인 우주이다. 평탄 우주의 가능성을 검증하기 위해서는 우주 끝에서 역학적 에너지의 크기를 좌우하는 우주물질의 분포 즉 우주의 ... ...
- 얍~! 특수 분장으로 체인지어린이과학동아 l2008년 13호
- 환상적인 노래 솜씨를 뽐내는 고양이들이 나오는 뮤지컬‘캣츠’. 이 고양이 분장은 평면적인 캐릭터분장이야. 다양한 안료로 고양이 얼굴을 그렸지만 사람의 얼굴 윤곽이 그대로 남아 있거든. 반면 특수 분장은 마스크처럼 보철을 만들어 신체에 붙이는 입체 분장을 말해. SBS에서 방영되는 ...
- [수학]새로운 연산 정의하는 법과학동아 l2008년 12호
- 반군이며 ▲덧셈에 관한 곱셈의 두 가지 분배 법칙이 성립한다. 1) 실수 h와 k에 대해 좌표평면 T: (x, y)→(x+h, y+k) 꼴의 이동 전체의 집합을 G라 하고, 이동 T1이 시행된 뒤에 이동 T2가 시행된 결과를 T2*T1라고 하자. G가 무한 아벨군인지에 대해 논하라. 2) 다음의 정리가 성립함을 증명하라. ① a, b, c가 G ...
- 올버스 패러독스과학동아 l2008년 12호
- 이때 ω=√k/m 이고 주기 T=dπ/ω이다. ω는 원운동의 각속도에 해당하며 원운동이 이뤄지는 평면에 대해 특정 각도에서 원운동을 보았을 때 운동 상태로 해석된다. Q 1) 구껍질에만 질량이 존재하고 내부는 비어있는 가상의 행성이 존재할 때 행성 내부에 중력이 작용하지 않음을 설명하라. 2) 반지름이 ... ...
- 과학고 입시 예상문제 완전분석과학동아 l2008년 11호
- y≤60, 10≤x≤50이고 |x-y|≤10, |y-z|≤10, |z-x|≤10일 때 갑, 을, 병이 모두 만난다. z=k일 때 xy평면에 갑, 을, 병이 모두 만나는 경우를 표현하면 그림과 같다.주어진 조건에서 x, y, z가 존재하는 영역의 부피는 60×60×40=144000이다. 갑, 을, 병이 모두 만나는 영역은 단면 넓이가 300, ...
이전666768697071727374 다음