d라이브러리
"원기둥"(으)로 총 198건 검색되었습니다.
- [수학체험실] 나만의 패킹 퍼즐 만들기수학동아 l2020년 10호
- 4개의 정육면체로 이뤄진 7개의 조각을 조립해 3×3×3 정육면체를 만드는 ‘소마 큐브’와 원기둥 모양의 조각 6개를 입구가 좁은 정육면체 상자에 채우는 ‘카지노 퍼즐’, 다양한 모양의 조각을 맞춰서 완성하는 ‘직소 퍼즐’ 등이 있다. 특히 미국의 유희 수학자인 마틴 가드너가 소개해 유명해진 ... ...
- [퍼즐라이프] 합체는 동시에! 공동 이동 퍼즐수학동아 l2020년 08호
- 3개 만들면 완성입니다. 정말 간단하죠?이 퍼즐의 목표는 나선 조각 3개를 결합해 납작한 원기둥을 만드는 겁니다. 만약 조각 2개를 먼저 결합하면 남은 조각을 넣을 틈이 없어집니다. 따라서 모든 조각을 동시에 움직여 결합해야 하죠. 3개의 조각을 동시에 결합하려면 그림②처럼 모든 조각이 한 ... ...
- STEP ② 숙주세포 침투과학동아 l2020년 07호
- 단백질을 이루는 단위 단백질인 캡소미어(capsomere)가 마치 벽돌처럼 나선형으로 쌓이며 원기둥 형태를 이루고 있다. 캡소미어는 소수성 분자 사이의 약한 결합인 소수성 상호작용에 의해 연결돼있기 때문에 계면활성제 등으로 쉽게 부술 수 있다.또 구형이라고 알려진 대부분의 바이러스는 사실 ... ...
- [퍼즐라이프] 채우는 재미가 쏠쏠! 카지노 퍼즐수학동아 l2020년 05호
- 것처럼 어떤 물건을 특정한 공간에 집어넣는 퍼즐입니다. 카지노 퍼즐에서는 납작한 원기둥 모양의 나무 칩 6개를 정육면체 상자 안에 넣어야 합니다. 언뜻 쉬워 보이지만, 상자 입구가 살짝 좁아 ‘어떤 구조로 채울까’와 ‘어떤 순서와 방향으로 칩을 넣을까’를 모두 고민해야 하죠. 오늘은 ... ...
- 수학이 가득한 벌집, 곤충계의 건축 박사 꿀벌을 만나다!수학동아 l2020년 04호
- 집을 짓는데 어떻게 정확하게 같은 크기의 정육각형을 만들겠어요. 다들 비슷한 크기로 원기둥을 만들면 저절로 정육각기둥이 되더라고요. Q 왜죠…?그게 자연의 신비 아니겠어요(뻔뻔)? 그런데 언뜻 듣기로는 계속 방이 만들어지면서 방 안에서 바깥쪽으로 미는 힘 때문에 육각기둥 구조가 ... ...
- [스미스의 탐구생활] 자물쇠가 열리는 원리어린이과학동아 l2019년 22호
- 자물쇠 중 가장 많이 쓰이는 방식은 ‘실린더형 자물쇠’예요. 실린더형 자물쇠는 작은 원기둥 형태인 플러그와 이를 감싸고 있는 실린더로 구성돼 있어요. 자물쇠가 잠겨 있을 땐 플러그가 돌아가지 않아요. 여러 개의 핀이 실린더와 플러그 사이에 쐐기처럼 박혀 있거든요. 열쇠를 넣으면 핀이 ... ...
- 150만 년 전 지구의 기록 빙하코어에서 찾다과학동아 l2019년 12호
- 파내는 게 아니라 깊이 있는 빙하를 시추해 뽑아낸다. 이렇게 뽑힌 빙하는 얇고 긴 원기둥 모양인데, 이를 ‘빙하코어’라고 부른다.지금까지 시추된 빙하코어 중 지구의 역사를 가장 장기간 담고 있는 빙하코어에는 지금부터 약 80만 년 전의 기록까지 새겨져 있다. 1996~2004년 유럽과학재단이 ‘EPICA ... ...
- 인류 발전의 원동력, 탄소 생명과 문명 만든 ‘만능열쇠’과학동아 l2019년 09호
- 기하학적 구조를 설명하는 화학결합 이론. 풀러렌(fullerene)탄소 원자가 구, 타원체, 원기둥 등의 형태로 배치된 동소체. 1985년 개발된 축구공 모양의 동소체(C60)가 가장 유명하다. 그래핀(graphene)탄소 원자가 벌집 모양의 6각형으로 연결된 평면 구조의 물질로 단일 원자층을 이루고 있다. 안드레 ... ...
- 축제에 웬 귀신이?!어린이과학동아 l2019년 07호
- 이들 산화철은 자석을 만나면 자신도 자석의 성질을 띠지요. 한편, 헤드 끝에는 전선을 원기둥 모양으로 꼬아 만든 코일’이 달려 있어요. 코일에 전류가 흐르면 양 끝에 N극과 S극이 각각 생기며 자석의 성질을 띠지요. 전류의 방향을 조절해 N극과 S극의 위치도 맘대로 정할 수 있어요. 이처럼 ... ...
- 포켓몬 몸집의 물리학 피카츄는 뚱뚱할까, 날씬할까?과학동아 l2019년 06호
- 알 수 있다. 이제, 두 식 V~R2H와 V~H2으로부터 R2H~H2이므로 R~H1/2을 얻는다. 사람의 몸을 원기둥으로 어림하면 사람의 허리둘레도 R에 비례하므로, ‘사람의 허리둘레는 키의 제곱근에 비례한다’는 흥미로운 결론을 얻게 된다. 쉽게 말해 체질량지수가 같은 두 사람이 있다고 하자. 이때 한 사람의 키는 ... ...
이전2345678910 다음