주메뉴바로가기
본문바로가기
동아사이언스
로그인
공지/이벤트
과학동아
어린이과학동아
수학동아
주니어
과학동아천문대
통합검색
뉴스
스페셜
D라이브러리
전체보기
뉴스
시앙스
과학쇼핑
스페셜
d라이브러리
추천검색어
바닥
밑바닥
평지
밑면
저변
밑바탕
근본
d라이브러리
"
평면
"(으)로 총 1,173건 검색되었습니다.
[수학영재캠프] 다각형의 분할과 조립
수학동아
l
2011년 07호
같은 넓이의 정사각형으로 조립할 수 있음을 보여라.두 종류의 정사각형 타일로
평면
을 가득 까는 것을 생각하자. 하나의 작은 타일 주위를 네 개의 큰 타일이 둘러싸듯 하며 두 종류의 타일을 번갈아 깔 수 있다. 여기서 하나의 작은 타일 주위를 둘러싼 네 타일의 중심점들을 차례로 연결하면 ... ...
'정육면체'로
평면
을 채울 수 있을까?
수학동아
l
2011년 07호
네모난 색종이를 가만히 살펴보고 있노라면, 무한한 상상력이 꿈틀댄다. 세상에 많은 것들을 종이 한 장으로 표현할 수 있기 때문이다. 변신의 귀재라 ... 채우기 작품을 만들 수 있다. 독자 여러분도 각자의 상상력과 창의력을 듬뿍 담아 자신만의
평면
채우기 작품을 만들어 보길 바란다 ... ...
[수학클리닉] 함수 정복하기!
수학동아
l
2011년 06호
합니다. 활용문제를 풀기 위해선 기본기가 탄탄해야 하거든요. 함수의 그래프를 좌표
평면
위에 바르게 나타내는 연습도 필요하고요.2학년 학생들은 일차함수의 조건을 기억해야 해요. 여러 함수식과 방정식을 섞어 놓은 다음, 일차함수를 고르라는 문제는 시험에 반드시나오거든요. 또한 일차함수 ... ...
PART 1 오디션에 숨어 있는 3가지 수학
수학동아
l
2011년 06호
될 수 있다고 배운다. 하지만 집합은 구체적으로 정의할 수 없는 용어다. 점이나 직선,
평면
처럼 두루 쓰이는 성질로 규정할 뿐이다. 결국 조건이 명확하지 않더라도 판단하는 사람이 조건을 만족시키는 사람과 그렇지 않은 사람을 나눌 수 있으면 집합이라고 할 수 있다.슈퍼스타K2나 위탄에서 각 ... ...
진실 혹은 거짓? 그림 속 도형 가능할까?
수학동아
l
2011년 06호
수 있다. 이 계단은 순환하는 무한계단처럼 보이지만 실제로는 불가능하다. 입체도형을
평면
에 그리면서 나타난 착시다. 이 같은 무한계단은 영화에서도 등장했다. 2010년 개봉한 영화 ‘인셉션’ 에서는 꿈을 설계하는방법을 알려주는 장면에 무한계단이 등장했다. 반복되는 무한계단은 영화의 핵심 ... ...
해석기하를 통한 창의적 연구
과학동아
l
2011년 06호
많다. 그에 비해 이 학생의 글은 심층적이다. 또 해석기하를 사용하기 위해 도형을 좌표
평면
위에 배치할 때는 일반성을 유지하도록 유의해야 한다는 점을 분명히 깨닫고 강조하고 있다. 그러면서도 일반성을 잃지 않는 범위 내에서는 대칭성 등을 이용할 수 있도록 요령 있는 배치가 필요하다는 ... ...
“수학은 뇌 전체 훈련에 효과적”
수학동아
l
2011년 05호
뒤 육군 공병사관학교에 입학해 종이 위에 입체의 투영도를 그려서 3차원 입체를 2차원
평면
으로 표현하는 방법인 화법기하학을 창시한다. 이는 당시 프랑스의 군사기밀에 부쳐져 15년간 공개되지 않았다. 그 뒤 수학자로 유명해진 몽주는 1780년에 파리대학 수리학 교수가 됐고, 1791년에는 새로운 ... ...
실험으로 이론을 확인하는 즐거움
과학동아
l
2011년 05호
답은 바로 튀어나왔습니다. 입체적 공간을 나눠 측정하는 방법을 제시했습니다. 2차원
평면
적 실험 후, 3차원 공간적 실험에 대한 생각이 바로 연결된 것입니다.이 책을 읽는 독자들에게 질문하고 싶습니다. 여름이 다가오고 있습니다. 교실에는 곧 에어컨을 켤 것입니다. 창문을 열면 더 시원할까요? ... ...
알쏭달쏭 표준을 잡아라! 한국표준과학연구원
어린이과학동아
l
2011년 05호
1m로 정했답니다.*지구자오선 : 지구를 남극과 북극을 지나는
평면
으로 잘랐을 때, 그
평면
과 지구 표면이 만나는 가상의 선.단위와 함께 놀자~!질량과 길이의 재미있는 단위와 그 표준에 대해 알아보니 정말 신기하고 놀라워! 어! 그런데 저기 있는 게임기들은 뭐지? 연구원 안에 오락실이 있는 건가? ... ...
존 밀너, 2011년 아벨상을 받다
수학동아
l
2011년 05호
새롭게 바라볼 수 있다고 말했다. 1차원에서는 직선을 다양체라고 말하고, 2차원에서는
평면
또는 도넛의 표면을 다양체라고 말한다. 사람이 하나의 점처럼 보일 만큼 아주 큰 도넛 위에 앉아서 주위를 둘러보면 원판 위에 앉아 있는 것처럼 느낄 것이다. 이번엔 아주 큰 곡선 위에 앉아서 주위를 ... ...
이전
53
54
55
56
57
58
59
60
61
다음
공지사항