주메뉴바로가기
본문바로가기
동아사이언스
로그인
공지/이벤트
과학동아
어린이과학동아
수학동아
주니어
과학동아천문대
통합검색
뉴스
스페셜
D라이브러리
전체보기
뉴스
시앙스
과학쇼핑
스페셜
d라이브러리
추천검색어
대변
대소변
사고
재앙
난리
변두리
근교
d라이브러리
"
변
"(으)로 총 867건 검색되었습니다.
Part 1. 수학 기피증을 극복하라!
수학동아
l
2009년 10호
하면 만들 수 있어. 한번 해봐. 그러면 정삼각형은 어떻게 접을 수 있을까? 세
변
의 길이가 같은 삼각형을 접어도 되고 세 각의 크기가 모두 60˚인 삼각형을 접어도 되는 것은 알고 있지? 아래 방법에 따라서 접어 보고 이렇게 접으면 정삼각형이 되는 이유를 생각해 봐. 동전 없애기놀이라고 해서 ... ...
삼각형은 왜 영어로 'triangle'이라고 부를까?
수학동아
l
2009년 10호
하고 영어로‘rectangle’이라 한다. ‘rect’은 ‘직각의’라는 뜻을 가진다.‘오각형’은
변
이 다섯 개인 도형을 말한다. 오각형의 영어이름은‘pentagon’으로 ‘5’를 뜻하는 ‘penta’(펜타)와 ‘각’을 뜻하는 ‘gonia’(고니아)의 합성어다. 5개의 각을 가진 모양이라는 뜻의 이름이다. 이와 유사한 ... ...
걸리버 여행기
수학동아
l
2009년 10호
형용사, 부사, 동사 등의 단어로 이루어집니다. 여기에 과거형, 미래형, 존댓말 등의
변
화가 적용되면 더욱 복잡해지지요. 먼저 ‘밥을 먹는다’와 같이 명사와 동사만으로 이루어진 가장 간단한 문장을 생각해 볼까요? 100개의 명사와 100개의 동사가 있을 경우 1개의 명사와 조합할 수 있는 동사의 ... ...
언어 유전자는 존재하나
과학동아
l
2009년 10호
그 뒤 오랜 세월을 거쳐 수많은 유전자의
변
화가 축적된 결과일 것이다. 즉 FOXP2 유전자
변
이는 사람의 ‘언어 본능’ 획득의 필요조건이지 충분조건은 아닌 셈이다. 그럼에도 FOXP2 유전자의 발견은 언어의 진화 역시 생물학의 진화 범주에서 결코 벗어날 수 없음을 강력하게 입증한 사례다. 1871년 ... ...
2. 모양 속에 안전 있다
수학동아
l
2009년 10호
바다의 거센 파도를 막아 주는 방파제가 항구를 감싸고 있기 때문이다. 방파제 주
변
에는 커다란 삐죽빼죽한 회색 구조물이 가득 쌓여있다. 이것을 '테트라포트'라 한다. 5t에서 100t이 넘는 것까지 다양한 크기의 테트라포트는 방파제를 둘러싸 파도를 이겨내고 있다. 하나에 수십만 원에서 수백만 원 ... ...
영화 ‘내 사랑 내 곁에’ 루게릭병을 잡아라
과학동아
l
2009년 10호
풀어야 할 난제가 많다.※ 홍윤호 교수는 서울대 의대를 졸업한 뒤 2006년 동대학원에서‘
변
이 SOD1 유전자가 운동신경세포의 세포골격 단백질에 미치는 영향에 대한 연구’로 박사학위를 받았다. 현재 서울대 보라매병원 신경과 전문의로 재직하고 있으며, 2006년부터 서울대 의대 신경과학 교실의 ... ...
사과를 가장 효율적으로 쌓는 법
과학동아
l
2009년 10호
부분은 평면 전체 넓이의 78.5% 정도다. 그러나 평면을 정삼각형 격자로 나누고지름이 한
변
의 길이와 같은 원을 중심이 격자의 교차점에 오게 배치하면 그냥 봐도 더 빽빽하게 채워졌음을 알 수 있다. 이때 원이 차지하는 부분은 평면 전체 넓이의 90.7% 정도로 정사각형 격자보다 효율이 높다. 만일 ... ...
3. 오늘 바로 절약의 고수되기
수학동아
l
2009년 09호
1과 2인 두 정사각형이 있어요. 넓이의 비는 각각 1×1, 2×2이므로 1:4가 되죠. 그럼 한
변
의 길이가 1, 2인 두 정육면체의 부피의 비는 어떻게 될까요? 부피는 각각 1×1×1, 2×2×2이므로 부피의 비는 1:8이랍니다. 부피의 비는 길이의 세제곱에 비례하기 때문이죠.이를 복숭아에 적용하면 복숭아의 부피는 ... ...
실전 맛보기!
수학동아
l
2009년 09호
않게 늘어놓아 될 수 있는대로 작은 정사각형을 만들려고 합니다. 이 정사각형의 한
변
의 길이는 몇 cm입니까?해결 포인트 직사각형을 늘어놓아서 정사각형을 만든다면 그 정사각형은 처음의 직사각형보다 당연히 크다. 단지 ‘작은’이라는 말 때문에 약수를 구해 버리는 실수를 저지르지는 말자 ... ...
χ의 대활약
수학동아
l
2009년 09호
않아도 내각의 합 x = 180˚ × 8 이니까 1480˚라는 걸 알 수 있어. 공식 하나만 알면 아무리
변
의 개수가 많은 다각형이라도 바로 내각의 합을 알 수 있어. 정말 신나는 일이지. 공식을 알면 쉽게 해결되는 문제가 너무나 많아. 이렇게 공식을 써서 일반화할 수 있게 된 건 모두 문자 덕분이야 ... ...
이전
49
50
51
52
53
54
55
56
57
다음
공지사항