d라이브러리
"예"(으)로 총 9,616건 검색되었습니다.
- [과학사 극장] 세종대왕이 측우기를 만든 게 아니다?과학동아 l2023년 07호
- 노력을 기울였음을 알 수 있다. 이렇게 완성된 칠정산은 조선의 달력을 만들고 일월식을 예측하는 데 활용됐다. 칠정산 편찬에 관한 이야기는 과학 연구에서 문화 교류의 중요성을 보여준다. 중국은 물론, 머나먼 이슬람의 역법이 칠정산 편찬의 바탕이 됐다. 그렇다면 그동안 왜 칠정산은 자주적인 ... ...
- [DGIST@융복합 파트너] 정밀 의료가 보편화된 세상을 꿈꾸다과학동아 l2023년 07호
- “정밀 의료가 보편화되려면 수많은 정보가 필요합니다. 그 기반을 쌓기 위해 우리는 ‘하나의 작은 것, 세포에 집중한다’는 신념을 기업명에 담았습니다.” 류동환 엘엠엔틱바이오텍 대표(DGIST 20학번)는 회사 이름을 ‘LMNTIC(엘엠엔틱)’으로 정한 이유를 이같이 설명했다. 엘엠엔틱은 ‘원소의 ... ...
- 허가제 통과되면 끝? 행복한 동물원은 이제 시작!어린이과학동아 l2023년 07호
- 다 만들어 지기 전에는 각 지역의 야생동물구조관리센터에서 임시로 보호할 예정”이라고 설명했어요. 마 교수는 “동물원이 변화하는 데는 오랜 시간이 필요하다”며 “동물원 허가제는 끝이 아닌 새로운 시작이니 동물원의 변화를 기대해 달라”고 말했습니다 ... ...
- [수학 상위1% 비밀무기] 대구과고 수학 1등 비결은? 시간단축 공략법수학동아 l2023년 07호
- 두고 다양한 풀이가 있을 수 있다는 사실을 알게 돼 수학이 너무 재밌게 느껴져요. 예를 들어 저는 이차함수 개념을 활용하는 문제라고 생각했는데 다른 친구는 기하학적으로 접근을 해야 한다고 하는 경우가 있었어요. 그때 너무 놀라웠어요. 또 친구들이 생각지 못한 방법을 수업 시간에 ... ...
- 세상에 없던 문제에 도전하라! 폴리매스수학동아 l2023년 07호
- 문제는 수학자가 푸는 문제처럼 아무도 답을 모르는 미해결 문제예요. 출제자도 답을 모르지요. 폴리매스 홈페이지 → [폴리매스 문제] 게시판에서 댓글로 자유롭게 의견을 나누며 혼자서는 풀기 어려운 문제를 함께 풀어 보세요. 폴리매스 규칙을 잘 지키며 문제를 풀면 국내 최고 수학자에게 수학 ... ...
- 팩트체크5. 방사성 물질이 가라앉아 해저에 축적된다?과학동아 l2023년 07호
- 성질에 따라 100만 년 이상 해수에 녹아 있기도 하고, 수년 내 가라앉기도 한다는 것이다. 예를 들면, 우라늄은 아주 무거운 원소이지만 바닷물 속 탄산염과 화학결합하면 잘 가라앉지 않고 물에 녹아 수백 만 년 이상 해양에서 아주 높은 농도로 일정하게 존재한다(물론 먼지나 해양 부패물 입자와 ... ...
- 소리없는 전쟁의 새로운 국면들... 인간vs.곤충과학동아 l2023년 07호
- 꼽는 건 ‘가능한 싸우지 않는 것’이다. 서로의 영역을 존중하면서, 오래 걸리더라도 예기치 못한 피해자를 만들지 않는 방법. 답답하고 뻔한 방식일 수 있다. 하지만 해마다 봄이면 꿀벌이 사라졌다고 걱정하다가 여름엔 벌레의 습격으로 고통받는 게 지겹다면, 한 번쯤 귀 기울여 봐야 할 전략이다 ... ...
- [논문탐독] 시뮬레이션의 새로운 지평 '양자컴퓨터'과학동아 l2023년 07호
- 분자에 입자가 하나 추가되면 2MB, 입자가 또 하나 추가되면 4MB가 필요하다는 뜻입니다. 예를 들어 카페인(C8H10N4O2)에는 총 160개의 오비탈이 있는데, 이 정보를 모두 저장하려면 2의 160제곱(약 10의 48제곱) 개의 숫자를 저장할 공간이 필요합니다. 2025년 경 지구상의 데이터를 모두 합하면 10의 24제곱 ... ...
- “2달 동안 증명법을 4개 만들며 한계에 도전하는 법을 배웠어요”수학동아 l2023년 07호
- 학술지에 증명 결과를 담은 논문을 제출했어요. 현재 심사 결과를 기다리고 있는 상태예요. 이번 경험은 각자에게 어떤 의미인가요? 켈시 : 한계에 도전하는 법을 배웠어요. 가끔 막히더라도 포기하지 않는 법과 그것을 헤쳐나갈 방법을 알게 된 것 같아요. 니카에아 : 수학 문제는 포기하지 ... ...
- [Reth?nking] 대수와 기하는 어떤 관계인가?수학동아 l2023년 07호
- 마지막 세 번째는 앞선 두 방법으로 풀 수가 없는, 훨씬 더 복잡한 곡선이 필요한 문제예요. 데카르트는 이 분류를 보며 진정한 의미에서 기하학적인 곡선이 무엇인지에 대해 탐구했던 것 같습니다. 이로 인해 기하학의 범위는 어디까지인지를 고민하게 됐던 것 같고요. 이런 과정에서 자연스럽게 ... ...
이전272829303132333435 다음