d라이브러리
"공간"(으)로 총 5,533건 검색되었습니다.
- [독자탐방] 멀티스케일 설계 창의연구실 컴퓨터, 화가에 도전하다!수학동아 l2013년 05호
- 재료를 뿌옇게 하는 건 말이 안 되잖아요? 그래서 재료를 사용하는 공간과 그렇지 않은 공간이 분명하게 나타날 때까지 시뮬레이션 해서 정밀도를 높여요. 그러면 수학적으로 최적화 된 구조물을 얻을 수 있죠. 이 기술을 ‘위상 최적 설계’라고 불러요.여기서는 위상 최적 설계의 아주 간단한 예를 ... ...
- 아빠! 어디 가? 수학으로 즐기는 똑똑한 소풍수학동아 l2013년 05호
- 안에 같은 크기의 김밥이 가득차 있는 정도를 기준으로 삼아 1이라고 했을 때, 정해진 공간 안에 물체가 들어차 있는 정도를 말한다.표에서 도시락의 크기는 김밥의 개수가 늘수록 자연스럽게 조금씩 증가하고 있지만, 밀도는 그렇지 않다는 사실을 알 수 있다. 실제로 11개를 포장할 때보다 7개를 ... ...
- 황금빛 햇살을 그릴 수 있을까과학동아 l2013년 05호
- 비슷한 ‘금’을 본 것은 통영의 달아공원에서였다. 지는 해가 하늘과 바다 사이에 제3의 공간을 만들고 있었다. 거제와 같은 남해 바다니, 아마 황 시인이 본 것과 같은 빛이었을지도 모르겠다.자연을 따라 하기 좋아하는 게 사람의 속성이다. 지는 해의 신비로운 금빛을 다른 곳에 재현할 수 있을까. ... ...
- 저는 로봇 입니다과학동아 l2013년 05호
- 분노, 어리석음을 모두 적출하였으며, 몸은 세포 수준에서 불멸을 획득하여 시간과 공간의 모든 제약을 뿌리치고 우주로 나아갈 수 있게 되었습니다. 그리고 우리들 로봇은 금속과 플라스틱의 낡은 육신을 벗고 의식을 가진 에너지 장 형태로 전환되어 당신들 곁에 언제나 어디서나 함께 할 것입니다 ... ...
- 엄마! 수학 잘하게 형 낳아 주세요과학동아 l2013년 04호
- 두 명씩 짝을 지어 같은 공간에서 각자 편지지 넣기를 하고 나머지 8명은 한 명씩 독립된 공간에서 혼자 일했다. 결과는 놀라웠다. 혼자 작업한 사람이 4시간 동안 평균 190개를 하는 동안 짝을 지어 작업한 사람은 31개 많은 221개를 완수한 것이다.함께 일한 동료의 성실한 태도에 영향을 받아 주변 ... ...
- PART 4. 구글 in Science과학동아 l2013년 04호
- 어스의 활약은 지구를 넘어 우주 행성까지 종횡무진이다. 실제로 메인 빌딩에 있는 체험 공간에서도 지구와 달, 화성, 태양계까지 생생하게 이미지로 볼 수 있다. 구글 어스는 누구나 접근할 수 있다는 게 최대 장점이다. ‘구글 잇!’ 구글에 가면 모든 정보가 있다는, 은유적인 표현이다. 구글의 ... ...
- 신나는 과학잡지 만들기과학동아 l2013년 04호
- 포함해 총 9개의 고등학교 과학동아리, 280여 명의 학생이 참여했다. 기본적으로 온라인 공간에서 생명과학과 진로에 관한 정보를 공유하는데, 연중 가장 큰 행사는 1년에 2권의 과학잡지를 손수 만드는 일이다. 과학잡지 제작이 힘든 까닭은 실험활동보고서나 논문과 달리 대중이 읽어도 흥미를 느낄 ... ...
- UPDATE과학동아 l2013년 04호
- 그렇게 인유의 시각 기억은 지워진 것과 현종의 시각 기억으로 나뉘었다. 그리고 지워진 공간에는 암흑이 가득히, 추호의 빈틈도 없이 들이찼다.“새로 배우세요. 남자분이 도와주면 돼요. 여자분이 잃은 게 뭔지 알고 있으니까요. 언어와 개념을 익히면 언젠가는 시각 기억과 하나가 될 거예요 ... ...
- [화보] 종이로 만든 입체 예술 , 팝업아트수학동아 l2013년 04호
- 팝업 북을 시중에서도 쉽게 접할 수 있다. 기술도 점점 발전해 책을 펼치면, 마치 가상의 공간에 들어와 있는 듯 생생한 입체감을 느낄 수 있다. 이렇게 입체감을 살리기 위해서는 대칭과 비례는 물론, 보는 시야에 따라 원근법을 강조하거나 종이의 높낮이를 다르게 하는 등의 방법을 사용한다 ... ...
- 도로시의 카오스 여행기 혼돈에 빠진 오즈를 구하라!수학동아 l2013년 04호
- 발견한다. 대기의 변화를 수학적으로 모델링 하기 위해 만든 방정식을 풀어 위상공간에 그리자 이상한 일이 벌어졌다. 점의 궤적이 어떤 한 점이나 기하학적 형태로 나타나지 않고, 일정 범위 안에서 나비 모양을 유지한 것이다. 이를 ‘로렌츠 끌개’라고 한다. 로렌츠의 첫 발견 이후, 과학자들은 ... ...
이전222223224225226227228229230 다음