d라이브러리
"이상"(으)로 총 13,389건 검색되었습니다.
- 세상에 단 하나뿐인 주기율표를 만들어보자!과학동아 l2020년 11호
- 누구나• 1개의 작품 당 1~4명까지 팀으로 참가 가능• 한 학교에서 15개의 작품 이상 출품 시 단체상 수상 가능■ 응모 기준주기율표 원소의 특징을 자유롭게 표현• 그림, 포스터, 포토샵, 동영상, 실물 모형 제작 등형식 제한 없음 (그림의 경우 A4용지 크기 이상)• 주기율표 20번까지는 필수로 ... ...
- [2020 노벨상] 물리학상│보이지 않는 블랙홀이 생길 수 있을까?과학동아 l2020년 11호
- 중심에 질량이 태양 질량의 245만 배인 블랙홀이 있을 것으로 계산했다. 그 이후 10년 이상 연구 자료가 쌓이면서 블랙홀 질량은 조금씩 수정됐다. 2008년 게즈 교수팀은 2차원 평면상의 위치와 별들의 시선속도 측정값을 함께 사용해 별들의 3차원 운동을 측정했다. 그리고 이를 바탕으로 블랙홀 질량을 ... ...
- Science Festival│ SF가 그린 디스토피아? 두려워 말고 준비하세요!과학동아 l2020년 11호
- 해봅시다. 이로 인해 테러리스트 방지법이 만들어진다면, 빅데이터를 통해 크림빵을 3개 이상 먹은 사람이 누구인지 굉장히 빨리 파악할 수 있습니다. 과거에 크림빵 3개를 먹었다는 이유로 잡혀갈 수도 있고요.이처럼 빠르게 정보를 파악할 때, 정부나 사회는 어떤 것이 옳고 그른지, 또 그런 기준이 ... ...
- [나는 과학동아 키즈]플라스틱 먹는 박테리아 찾아 스타트업(start-up)!과학동아 l2020년 11호
- 이들과의 관계 때문에 섣불리 의견을 말하지 못하는 경우가 많다. 그러나 같은 팀이 된 이상 솔직하게 의견을 교환하는 것이 무엇보다 중요하다. (창업에 관심있는 독자가 이 글을 읽고 있다면 꼭 기억하길 바란다.)현재 우리의 목표는 리플라 프로젝트를 통해 플라스틱 재활용 산업의 채산성을 ... ...
- 대세 게임 ‘폴 가이즈’ 재미 비결은 ‘F=ma’과학동아 l2020년 11호
- 생생했다. 올해 8월 출시되고 한 달 만에 게임 유통 플랫폼 스팀(Steam)에서 700만 장 이상 판매된 영국 게임 개발사 미디어토닉의 ‘폴 가이즈(Fall Guys)’ 얘기다. ‘통통’ 캐릭터의 점프가 자연스러운 이유게임이 생생하다는 것은 화면과 움직임이 현실 세계와 분간이 가지 않을 정도로 닮았다는 ... ...
- 반은 수컷 반은 암컷, 현실판 ‘아수라 백작’ 자웅모자이크과학동아 l2020년 11호
- 연구팀이 몸의 절반은 흰색(암컷), 나머지 절반은 빨간색(수컷)인 북부홍관조를 40일 이상 관찰해 국제학술지 ‘윌슨조류학저널’에 공개하기도 했다.doi: 10.1676/14-025.1그렇다면 자웅모자이크 돌연변이가 인간에서도 나타날 수 있을까. 답은 ‘불가능’이다. 인간의 성별이 결정되는 방식은 곤충이나 ... ...
- 우리는 균이 필요하다..유산균의 모든 것!과학동아 l2020년 11호
- Lacto-bacillus plantarum)은 락토바실러스 람노서스(Lactobacillus rhamnosus)보다 생존력이 1000배 이상 높다”고 말했다.다만 소비자가 제품에서 이런 세세한 조건을 확인하는 것은 쉽지 않다. 그럴 땐 ‘소구 균수’가 많은 것을 선택하는 게 하나의 방법이 될 수 있다. 일종의 ‘인해전술’이다.소구 균수는 .. ...
- [과학동아 X 긱블] 물수제비 기계과학동아 l2020년 11호
- 맥이 빠집니다. 이제 남은 찰흙은 112발. 이거 다 쏘고 집에 가려고 했는데, 결과는 더이상 좋아질 게 없습니다. 잭키 님께 맛난 실패를 제공해주실 분은 유튜브 긱블 채널에 댓글로 기발한 아이디어를 제보해주세요 ... ...
- [과학동아 프렌즈] 로봇 만들고 책 읽으며 과학고 합격과학동아 l2020년 11호
- 과학을 잘하는 학생들만 모여있어 경쟁이 힘들지 않을까 궁금했다. 하지만 “상상 이상”이라는 긍정적인 대답이 돌아왔다. “교복을 입지 않아도 돼서, 탐구대회를 통해 학생이 직접 연구를 진행하며 좋아하는 과학에 대해 더 깊게 배울 수 있어서”라고 이유를 설명했다.그는 눈코 뜰 새 없이 ... ...
- [매스크래프트] #11. 미국 대통령 집 백악관 미국 선거제도에도 수학이!수학동아 l2020년 11호
- 중 미국의 경제학자 케네스 애로는 1951년 자신의 논문을 통해 투표자들에게 세 개 이상의 서로 다른 투표방식을 제시할 때 어떤 투표 방식도 모두가 만족할 수 없다는 것을 수학적으로 증명해 발표했어요. 일명 ‘애로의 불가능성 정리’라고 불리는 이 정리는 모두가 만족할만한 ‘완전한’ ... ...
이전150151152153154155156157158 다음