d라이브러리
"모든것"(으)로 총 10,402건 검색되었습니다.
- [화장실의 변신 ③] 어느 곳에서나 쓸 수 있다!어린이과학동아 l2020년 04호
- 우리가 쓰는 화장실은 물만 내리면 배설물을 하수처리장까지 전달해 주지만, 상하수도 시설이 없는 나라도 많대. 그곳에서 쓸 수 있는 화장실도 있어? 빌 게이츠, 화장실 재발명에 뛰어들다2018년 11월 6일 중국 베이징에 전세계 화장실 발명가들이 모였어요. 빌 앤 멜린다 게이츠 재단이 2011년부터 ... ...
- [과학뉴스] 태양 표면, 초근접샷 공개!어린이과학동아 l2020년 04호
- 1월 29일, 미국 국립과학재단(NSF)은 인류 역사상 가장 자세한 태양 표면 사진을 공개했어요. 태양 표면의 쌀알무늬가 자세히 보이는 사진이었지요. 쌀알무늬는 태양 표면에서 플라스마*가 바깥쪽으로 나왔다가 다시 태양 내부로 들어가는 대류 현상이 일어나며 나타나는 무늬예요. 사진 속에서 밝 ... ...
- [일본유학일기] 국가대표급 동아리에 뛰어든 용감한 한인 유학생과학동아 l2020년 04호
- ◇ 술술읽혀요 | 나의 일본 유학 일기 일본 대학의 동아리 활동은 크게 ‘서클’ 활동과 ‘부’ 활동으로 나뉜다. 서클은 관심사가 같은 학생들이 모여 가볍게 취미 활동을 하는 그룹이다. 반면 부는 애초에 ‘5년(4년+유급)을 함께할 부원을 찾습니다’라고 할 정도로 이악물고 취미 활동을 한다. ... ...
- [핵배송 비결1] 고객데이터로 주문을 예측하라수학동아 l2020년 04호
- 생활용품부터 도서, 화장품, 신선 식품, 전자제품에 이르기까지 온라인으로 1억 개가 넘는 물건을 판매하는 산타마켓은 3단계를 거쳐 고객에게 물건을 배송합니다. 첫 번째는 공장이나 농가 같은 원산지로부터 물건을 사들인 뒤 물류센터에 보관하는 단계, 두 번째는 주문이 들어온 물건을 모아 포 ... ...
- [스타쌤의 수학공부 꿀팁] 뼛속까지 새겨지는 수학공부수학동아 l2020년 04호
- ‘원주각은 중심각의 절반이다’ 중학교 3학년이 되면 누구나 배우는 내용이지만, 10년이 지나도 이 사실을 기억하는 사람은 아마 절반도 채 되지 않을 것이다. 운 좋게 절반 안에 든 사람들은 어떻게 평소에 떠올릴 일 없는 원주각과 중심각의 관계를 어제 일처럼 기억하고 있는 걸까. 이 비밀을 알 ... ...
- [퍼즐라이프] 불가능에 도전하는 15 퍼즐의 변형수학동아 l2020년 04호
- ※편집자주. KPP는 ‘퍼즐을 좋아하는 사람들의 모임’입니다. 저희들의 퍼즐 이야기를 통해 신기한 퍼즐과 그 속에 숨은 수학을 즐겨보세요! 안녕하세요, KPP의 ‘한동규’입니다. 오늘은 퍼즐 조각을 이동해 모든 조각을 순서대로 배치하는‘15 퍼즐’을 소개하려고 해요. 15 퍼즐은 세계적으로 ... ...
- [한페이지 뉴스] 평면렌즈 하나로 6m 거리까지 선명하게 찰칵!과학동아 l2020년 04호
- ◇ 보통난이도 | 한 페이지 뉴스 디지털카메라를 사용하는 사람은 렌즈에 적힌 작은 숫자에 궁금증을 품은 적이 있을 것이다.18~55mm, 24~70mm, 70~200mm 등으로 쓰여진 숫자들은 렌즈 고유의 초점거리다. 렌즈마다 초점을 맞춰 찍을 수 있는 가장 가까운 피사체와 가장 먼 피사체 사이의 거리가 다르다는 ... ...
- 아로코스, 행성 탄생 이론 뒤집나과학동아 l2020년 04호
- ◇ 보통난이도 | 아로코스의 비밀 ‘태양계 행성은 미행성*이 고속으로 충돌해 만들어졌다.’ ‘태양계 행성은 미행성이 완만한 속도로 뭉쳐 만들어졌다.’ 그간 태양계 행성 형성 과정에 대해서는 이렇게 상반된 두 가지 이론이 존재했다. 그중에서도 전자인 ‘고속 충돌설’이 우세했다. 그 ... ...
- [주접 평론가 피터팍의 아이돌 수학] 네트워크 이론과 BTS의 영향력수학동아 l2020년 04호
- 전작 ‘MAP OF THE SOUL: PERSONA’에서 이어지는 ‘MAP OF THE SOUL: 7’은 데뷔 7년차를 맞은 7명의 방탄소년단 멤버들이 지난 시간을 돌아보며 ‘보여주고 싶은 나’와 ‘외면하고 싶은 나’를 거쳐 ‘온전한 나’를 찾아가는 과정을 솔직하게 담는다. 그런데 방탄소년단은 여기에서 그치지 않고 한 발 더 나 ... ...
- [옥스퍼드 박사의 수학로그] 제4화. 방정식의 근과 대칭은 무슨 사이수학동아 l2020년 04호
- ‘5차 이상의 방정식에선 근의 공식이 없다’라는 말을 들어보셨죠? 19세기 두 비운의 수학자닐스 헨리크 아벨과 에바리스트 갈루아가 밝힌 사실입니다. 이들의 연구는 군론의 토대가 되었는데요, 오늘은 군론과 방정식 사이에 어떤 관계가 있는지 보여드리려고 합니다. 방정식은 어떤 미지수 ... ...
이전143144145146147148149150151 다음